

Formal Total Synthesis of (–)-Saliniketals

J. S. Yadav,* Sk. Samad Hossain, Madasu Madhu, and Debendra K. Mohapatra

Organic Chemistry Division-I, Indian Institute of Chemical Technology (CSIR), Hyderabad 500007, India

vadavpub@iict.res.in; mohapatra@iict.res.in

Received September 4, 2009

A highly stereoselective formal total synthesis of the ornithine decarboxylase inhibitors (-)-saliniketals A and B is described. The salient features of the synthesis are the utilization of a desymmetrization technique to create six contiguous chiral centers from a single bicyclic precursor as well as substrate-controlled Grignard reaction, intramolecular Wacker-type oxidation, and antialdol reaction following Pirrung-Heathcock conditions.

Saliniketals A (1) and B (2), unusual bicyclic polyketides, constitute a novel class of bioactive marine natural products that were isolated in 2007 by Fenical and co-workers from actinomycete Salinispora arenicola (Figure 1).¹ They inhibit ornithine decarboxylase (ODC) induction, which is used as a marker of tumorigenesis and is often seen in epithelial tumors of the colon, skin, prostate, and stomach.² Thus, the inhibition of ODC activity decreases the cellular concentration of polyamines and this may provide an effective strategy to prevent carcinogenesis.3

The saliniketals A and B possess a 1,4-dimethyl-2,8dioxabicyclo[3.2.1]octane ring featuring an elaborate side chain at C11 that terminates in an unsaturated primary

8822 J. Org. Chem. 2009, 74, 8822-8825

amide. The structures were assigned mainly by 2D NMR spectroscopic methods. The absolute stereochemistry was assigned by modified Mosher's method.⁴ The total synthesis of 1 and 2 was considered of interest, as part of our ongoing research activities in the total syntheses of complex biologically active natural and designed molecules,⁵ by a desymmetrization strategy to create contiguous chiral centers from a single bicyclic precursor. We report herein a highly stereoselective formal total synthesis of saliniketals A (1) and B (2). To date only two total syntheses of these have been reported by Paterson et al. and De Brabander et al.⁶

FIGURE 1. Structures of (-)-saliniketals A and B.

The details of our approach toward the synthesis of saliniketals A and B are depicted in Scheme 1, which illustrates that they could be constructed by Stille coupling⁷ through a common advanced intermediate 3, which in turn could be obtained from 4. The aldehyde 4 could be prepared from 5, which in turn could be accessed from 6. Compund 6 would be obtained by utilizing a desymmetrization technique to create six contiguous centers.

SCHEME 1. Retrosynthetic Analysis of (-)-Saliniketals A and B

The *exo*-alkylated lactone 6^8 was obtained by the following sequence, Zn-Cu couple mediated (-10 °C) [4+3]

Published on Web 10/29/2009

DOI: 10.1021/jo901913h © 2009 American Chemical Society

^{*}To whom correspondence should be addressed. Fax: +91-40-27160512. (1) Williams, P. G.; Asolkar, R. N.; Kondratyuk, T.; Pezzuto, J. M.; Jensen, P. R.; Fenical, W. J. Nat. Prod. 2007, 70, 83.

^{(2) (}a) Saunders, L. R.; Verdin, E. Mol. Cancer Ther. 2006, 5, 2777.
(b) Thomas, T.; Thomas, T. J. Cell Mol. Life Sci. 2001, 58, 244.
(3) (a) Basuroy, U. K.; Gerner, E. W. J. Biochem. 2006, 139, 27.

⁽b) Gerner, E. W., Jr. Nat. Rev. Cancer 2004, 4, 781.

⁽⁴⁾ Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092

⁽⁵⁾ Yadav, J. S.; Srinivas Rao, C.; Chandrasekhar, S.; Rama Rao, A. V. Tetrahedron Lett. 1995, 36, 7717

^{(6) (}a) Paterson, I.; Razzak, M.; Anderson, E. A. Org. Lett. 2008, 10, 3295. (b) Liu, J.; De Brabander, J. K. J. Am. Chem. Soc. 2009, 131, 12562.

⁽⁷⁾ Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442 and references cited therein. (8) (a) Kindly see the Supporting Information. (b) Rama Rao, A. V.; Yadav,

J. S.; Vidyasagar, V. J. Chem. Soc., Chem. Commun. 1985, 55.

cycloaddition between 2,4-dibromopentan-3-one (7) and furan to form 2,4-dimethyl-8-oxabicyclo[3.2.1]oct-6-ene-3ones,⁹ DIBAL-H reduction, benzyl protection, asymmetric hydroboration, PCC mediated oxidation, Bayer-Villiger reaction,¹⁰ and alkylation. Acid-catalyzed methanolysis¹¹ of the bicyclic lactone 6 proceeded smoothly to furnish ester 14 in 85% yield. Lithium aluminum hydride mediated reduction of the ester afforded the primary alcohol in 90% yield, which was subsequently oxidized to aldehyde 15 with IBX¹² in DMSO. Our initial approach for a substratecontrolled Grignard reaction¹³ with protected bromoketone¹⁴ in THF afforded the alcohol 16 with good stereoselectivity (86:14 by HPLC) in high yield (Scheme 2). Compound 16 on treatment with BF₃·Et₂O in CH₂Cl₂ at 0 °C afforded a new product 17 instead of 4, which was assigned based on ¹H NMR spectroscopy and mass analysis. Even treatment with aqueous acetic acid at 80 °C afforded compound 17 as the sole product.

To avoid the protecting group manipulation, Grignard reaction with 1-butenylmagnesium bromide¹⁵ in THF afforded the alcohol **18** with excellent stereoselectivity (96:4 by

 (9) Hoffmann, H. M. R. Angew Chem., Int. Ed. 1984, 23, 1.
 (10) Corey, E. J.; Weinshenker, N. M.; Schoff, T. F.; Hubber, W. J. J. Am. Chem. Soc. 1969, 91, 5675.

(13) Francke, W.; Schröder, F.; Philipp, P.; Meyer, H.; Sinnwell, V.; Gries, G. *Bioorg. Med. Chem.* **1996**, *4*, 363.

(14) Stowell, J. C.; Keith, D. R.; King, B. T. Org. Synth. 1984, 62, 140.

SCHEME 3. Synthesis of the Fragment 5

SCHEME 4. Synthesis of the Advanced Intermediate 3

HPLC) in high yield. The absolute stereochemistry of the newly introduced chiral center was confirmed at a later stage of the synthesis. The hydroxyl group was protected as its acetate derivative, and upon further treatment with aq acetic acid (60%) at 60 °C afforded the lactol **19** in 86% yield. Treatment of compound **19** with LiBH₄ gave the triol **20**. The TBDPS ether derivative **5** was obtained in 94% yield by treating **20** with TBDPSCl and imidazole (Scheme 3).

At this stage, we utilized the intramolecular Wacker oxidation reaction as followed by Paterson et al. for the total synthesis of saliniketals A and B. An intramolecular Wacker-type cyclization¹⁶ of the 1,3-diol **5** with a catalytic amount of PdCl₂ and CuCl₂ in THF under oxygen at 0 °C afforded the desired [3.2.1]-dioxabicycle **21** (Scheme 4). The ¹H and ¹³C

⁽¹¹⁾ Yadav, J. S.; Venkatram Reddy, P.; Chandraiah, L. Tetrahedron Lett. 2007, 48, 145.

⁽¹²⁾ Frigeno, M.; Santagostino, M. Tetrahedron Lett. 1994, 35, 8019.

⁽¹⁵⁾ Walkup, R. D.; Kim, Y. S. Tetrahedron Lett. 1995, 36, 3091.

^{(16) (}a) Ploysuk, C.; Kongkathip, B.; Kongkathip, N. Synth. Commun.
2007, 37, 1463. (b) Bulman Page, P. C.; Rayner, C. M.; Sutherland, I. O. Tetrahedron Lett. 1986, 27, 3535. (c) Mori, K.; Seu, Y.-B. Tetrahedron 1985, 41, 3429. (d) Kongkathip, B.; Kongkathip, N. Tetrahedron Lett. 1984, 25, 2175.

FIGURE 2. ORTEP diagram of compound 24.

NMR data for the bicyclic acetal **21** were in good agreement with the corresponding region of saliniketals A and B.¹⁷

Deprotection of the TBDPS group with a 1 M solution of TBAF in THF at room temperature afforded the primary alcohol, which was oxidized with IBX to obtain the aldehyde intermediate 4 in 91% yield. The resulting aldehyde 4 on antialdol reaction following Pirung–Heathcock¹⁸ protocol (lithium enolate of 2,6-dimethylphenyl propionate) gave the required compound 22 in 96:4 ratio (by HPLC). Catalytic hydrogenation of compound 22 followed by acetonide protection afforded compound 24, whose nOe correlation provided the information about its anti-geometry. The value at 100.6 ppm in ¹³C NMR also supported the anti-geometry between C7 and C9.¹⁹ In addition, the single crystal X-ray crystallographic analysis unambiguously confirmed its relative and absolute stereochemistry (Figure 2). The absolute configuration of the molecule was further confirmed by converting the ester 24 to an advanced common intermediate **3**. The spectral and analytical data of **3** { $[\alpha]^{25}_{D}$ +6.1 (*c* 1.24, CHCl₃); lit.^{6a} $[\alpha]^{25}_{D}$ +6.2 (c 0.81, CHCl₃)} were in good agreement with the reported values by Paterson et al.

In conclusion, we have achieved the formal total synthesis of saliniketals A and B following our own protocol of desymmetrization approach to create six contiguous asymmetric centers from a bicyclic lactone and following a 19-step synthetic sequence with 18% overall yield starting from a known intermediate **11**.

Experimental Section

(3S,4R)-4-((2R,3R,4S,5S,6S)-4-Benzyloxy)-6-methoxy-3,5-dimethyltetrahydro-2*H*-pyran-2yl)-1-(2,5,5-trimethyl-1,3-dioxan-2-yl)pentan-3-ol (16). To a mixture of magnesium (1.083 g, 44.56 mmol) in 1,2-dibromoethane (0.01 mL) in THF (20 mL) was added a solution of 2,5,5-trimethyl-2-(bromoethyl)-1,3-dioxan (7.014 g, 29.72 mmol) in THF (30 mL) under argon at a rate to maintain the internal temperature of the reaction below 25 °C. The solution was stirred for an additional 2 h at room temperature before being cooled to -40 °C. A solution of aldehyde 15 (0.9 g, 2.97 mmol) in THF (15 mL) was added to the reaction mixture, which was stirred for another 1 h at the same temperature. After completion of reaction, the reaction mixture was quenched with saturated NH₄Cl solution. The organic layer was separated and the aqueous layer extracted with ethyl acetate $(2 \times 50 \text{ mL})$. The combined organic layer was dried over anhydrous Na₂SO₄, concentrated to dryness under reduced pressure, and purified by silica gel chromatography, utilizing ethyl acetate and hexane (1:7) as mobile phase, to afford **16** as a colorless oil (1.24 g, 90%). [α]²⁷_D +36.6 (*c* 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.22 (m, 5H), 4.56 (s, 1H), 4.51 (s, 2H), 3.97–3.82 (m, 3H), 3.57 (dd, *J* = 2.8, 11.5 Hz, 2H), 3.53–3.35 (m, 3H), 3.40 (s, 3H), 2.29–1.46 (m, 7H), 1.39 (s, 3H), 1.07 (d, *J* = 7.5 Hz, 3H), 1.04 (s, 3H), 0.98 (d, *J* = 7.1 Hz, 3H), 0.88 (d, *J* = 6.9 Hz, 3H), 0.82 (d, *J* = 6.9 Hz, 3H); ESIMS for C₂₇H₄₄O₆ *m*/z 487 [M + Na]⁺.

(15,3R,4S,5R,6S,7R,8R)-4,6,7,8-Tetramethyl-3-(2-(2,5,5-trimethyl-1,3-dioxan-2-yl)ethyl)-2,9-dioxabicyclo[3.3.1]nonane (17). Compound 16 (100 mg, 0.22 mmol) was taken in CH₂Cl₂ (4 mL) under N₂ atmosphere and cooled to 0 °C. To this solution was added $BF_3 \cdot Et_2O(0.01 \text{ mL})$, then the mixture was stirred for 1 h at the same temperature. After completion of the reaction, the reaction mixture was quenched with a saturated solution of NH4Cl and the organic layer was separated and extracted with ethyl acetate (2 \times 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated to dryness in vacuo, and purified by silica gel chromatography, using 3% ethyl acetate in hexane as the mobile phase to obtain compound 17 as a colorless liquid (56 mg, 60%). ¹H NMR (300 MHz, CDCl₃) δ 7.38–7.22 (m, 5H), 4.59 (dd, J = 12.4, 13.2 Hz, 2H), 4.52 (d, J = 5.3 Hz, 1H), 4.18 (dd, J =3.6, 5.8 Hz, 1H), 3.76 (m, 1H), 3.64-3.53 (m, 2H), 3.43-3.33 (m, 3H), 2.11–1.65 (m, 7H), 1.50 (s, 3H), 1.25 (s, 6H), 1.05 (d, J = 7.2 Hz, 3H), 0.93 (d, J = 7.0 Hz, 3H), 0.68 (d, J = 8.7 Hz, 3H); ESIMS for $C_{26}H_{40}O_5 m/z 455 [M + Na]^+$.

(2R',3S')-2-((2R,3R,4S,5S)-4-(Benzyloxy)-6-methoxy-3,5-dimethyltetrahydro-2H-pyran-2-yl)hept-6-en-3-ol (18). To a stirred solution of aldehyde 15 (3.8 g, 12.45 mmol) in dry THF (50 mL) under nitrogen atmosphere was added butenyl magnesium bromide in THF [prepared from magnesium (0.76 g, 31.37 mmol) and butenyl bromide (2.54 mL, 25.09 mmol) in THF (25 mL)] at -78 °C, then stirring was continued for 2 h. The reaction mixture was quenched with saturated ammonium chloride solution at -78 °C and allowed to warm to room temperature. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3×50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by silica gel column chromatography with ethyl acetate and hexane (1:9) as eluent to afford alcohol **18** (4.06 g, 90%) as a colorless liquid. $[\alpha]^{2'}_{D}$ +31.2 (*c* 1.4, CHCl₃); IR (neat) ν 3492, 3068, 3030, 2974, 2916, 1639 cm⁻¹; ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3) \delta 7.30 (d, J = 4.5 \text{ Hz}, 4\text{H}), 7.24 (m, 1\text{H}), 5.80$ (ddt, J = 16.6, 9.8, 6.8 Hz, 1H), 5.03 (dd, J = 16.6, 1.5 Hz, 1H),4.95 (dd, J = 9.8, 1.5 Hz, 1H), 4.51 (s, 1H), 4.49 (s, 2H), 3.91 (m, 1.5 Hz, 1H), 4.51 (s, 1H), 4.49 (s, 2H), 3.91 (m, 1.5 Hz, 1H), 4.51 (s, 1H), 4.49 (s, 2H), 3.91 (m, 1.5 Hz, 1H), 4.51 (s, 1H), 4.51 (s, 1H), 4.51 (s, 1H), 4.51 (s, 2H), 3.91 (m, 1.5 Hz, 1H), 4.51 (s, 1H), 4.51 (s, 2H), 3.91 (m, 1.5 Hz, 1H), 4.51 (s, 1H), 4.51 (s, 2H), 3.91 (m, 1.5 Hz, 1H), 4.51 (s, 2H), 3.91 (1H), 3.81 (m, 1H), 3.35 (s, 3H), 2.36–1.99 (m, 4H), 1.96–1.77 (m, 2H), 1.67-1.39 (m, 3H), 1.06 (d, J = 7.6 Hz, 3H), 0.97 (d, J = 6.8Hz, 3H), 0.79 (d, J = 7.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.8, 138.6, 128.2, 127.2, 127.1, 114.5, 104.7, 75.2, 71.8, 71.0, 69.3, 55.4, 38.5, 36.4, 33.4, 33.1, 30.8, 13.2, 9.7, 7.6; HRMS calcd for $C_{22}H_{34}O_4$ [M + Na]⁺ 385.2354, found 385.2344.

 $(2R_3R_4R_3)$ -3-(Benzyloxy)-4-(($1S_3R_4R_5S_3$)-1,4-Dimethyl-2, 8-dioxabicyclo[3.2.1]octan-3-yl)-2-(methylpentyloxy)(*tert*-butyl)diphenylsilane (21). To a stirred solution of diol compound 5 (500 mg, 0.85 mmol) in dry THF (10 mL) at 0 °C was added CuCl₂ (22.8 mg, 0.17 mmol) and PdCl₂ (30 mg, 0.17 mmol). The reaction mixture was flushed with O₂ twice at 0 °C and stirring was continued for 12 h at the same temperature under O₂ atmosphere. The reaction mixture was quenched with Et₂O (10 mL) and filtered through a pad of a 1:1 mixture of MgSO₄:SiO₂ and washed with Et₂O. The combined organic layer was concentrated to dryness under reduced pressure and the resulting oil was purified by silica gel chromatography with ethyl acetate and hexane (1:19) as the mobile phase to obtain compound **21** (448 mg, 90%) as a colorless oil. [α]²⁷_D -22.3 (*c*

⁽¹⁷⁾ Kindly see the Supporting Information.

⁽¹⁸⁾ Pirrung, M. C.; Heathcock, C. H. J. Org. Chem. 1980, 45, 1727

⁽¹⁹⁾ Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511.

3.05, CHCl₃); IR (neat) ν 3451, 3067, 2958, 2932, 2859, 1725, 1631, 1463, 1428 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.61 (m, 4H), 7.40–7.21 (m, 11H), 4.58 (dd, J = 18.1, 11.3 Hz, 2H), 4.11 (m, 1H), 3.81 (dd, J = 9.8, 6.0 Hz, 1H), 3.70 (dd, J = 10.5, 1.5 Hz, 1H), 3.51 (dd, J = 10.5, 7.5 Hz, 1H), 3.34 (dd, J = 9.8, 1.5 Hz, 1H), 1.94–1.76 (m, 2H), 1.75–1.61 (m, 3H), 1.41 (s, 3H), 1.42–1.34 (m, 2H), 1.08–1.01 (m, 12H), 0.78 (d, J = 7.5 Hz, 3H), 0.56 (d, J = 6.7 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.4, 135.6, 133.9, 133.8, 129.5, 128.2, 127.5, 127.1, 126.9, 104.7, 83.2, 80.1, 74.9, 73.0, 64.9, 38.2, 36.4, 34.2, 33.8, 29.7, 26.8, 24.2, 23.9, 19.2, 16.2, 12.7, 10.0; HRMS calcd for C₃₇H₅₀O₄NaSi [M + Na]⁺ 609.3376, found 609.3367.

(2R,3R,4R,5R,6R)-2,6-Dimethylphenyl-5-(benzyloxy)-6-((1S, 3R,4R,5S)-1,4-dimethyl-2,8-dioxabicyclo[3.2.1]octan-3-yl)-3-hydroxy-2,4-dimethylheptanoate (22). n-Butyl lithium (3.6 mL, 1.6 M in hexane, 5.88 mmol) was added dropwise to an icecooled solution of diisopropylamine (0.82 mL, 5.88 mmol) in dry THF (10 mL) and the mixture was stirred for 20 min. The reaction mixture was then cooled to -78 °C and propionate ester (671 mg, 6.53 mmol) in dry THF (10 mL) was added slowly to the in situ generated LDA solution with stirring for an additional 45 min. Aldehyde 4 (452 mg, 1.31 mmol) in dry THF (10 mL) was added to the reaction mixture, which was stirred another 1 h at -78 °C. The reaction mixture was quenched with aqueous ammonium chloride solution and extracted with ethyl acetate (3×30 mL). The combined organic layer was dried over anhydrous Na2SO4, concentrated under reduced pressure, and purified by silica gel chromatography, using ethyl acetate and hexane (1:9) as the mobile phase, to afford aldol adduct **22** (555 mg, 81%) as a colorless oil. $[\alpha]^{27}$ -37.0 (c 2.1, CHCl₃); IR (neat) v 3486, 2971, 2882, 1755, 1636, 1461 cm^{-1} ; ¹H NMR (300 MHz, CDCl₃) δ 7.40–7.26 (m, 5H), 7.02 (s, 3H), 4.72 (dd, J = 38.1, 11.3 Hz, 2H), 4.31 (d, J = 10.0Hz, 1H), 4.23 (dd, J = 6.4, 3.5 Hz, 1H), 3.91 (s, 1H), 3.82 (dd, J = 10.5, 1.3 Hz, 1H), 3.65 (dd, J = 10.1, 1.7 Hz, 1H), 2.88 (qd, J = 10.0, 6.9 Hz, 1H), 2.17 (s, 6H), 2.11–1.95 (m, 3H), 1.92-1.64 (m, 4H), 1.48 (s, 3H), 1.25 (d, J = 7.1 Hz, 3H), 1.21 (d, J = 6.9 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H), 0.72 (d, J =6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.5, 148.1, 138.0, 130.4, 128.7, 128.5, 128.3, 127.7, 126.9, 125.5, 104.8, 86.8, 80.0, 76.1, 72.9, 72.1, 44.0, 36.3, 34.3, 33.8, 33.7, 24.1, 23.8, 16.3, 16.2, 13.9, 12.8, 11.5, 9.9; HRMS calcd for $C_{32}H_{44}O_6$ [M + Na]⁺ 547.3030, found 547.3042.

(2R,3R,4S,5R,6R)-2,6-Dimethylphenyl-6-((1S,3S,4R,5S)-1,4dimethyl-2,8-dioxa-bicyclo[3.2.1]octan-3-yl)-3,5-dihydroxy-2,4dimethylheptanoate (23). To a solution of compound 22 (200 mg, 0.38 mmol) in ethyl acetate (6 mL) was added a catalytic amount Pd-C (10%) under H_2 balloon pressure with stirring at room temperature for 12 h. The reaction mixture was filtered on a small pad of Celite, concentrated to dryness under reduced pressure, and purified by silica gel chromatography, using ethyl acetate and hexane (1:6), to obtain compound 23 (155 mg, 94%) as a colorless liquid. $[\alpha]^{27}_{D}$ –9.6 (*c* 2.5, CHCl₃); IR (neat) ν 3449, 2968, 1752, 1463 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.05 (s, 3H), 4.38 (dt, J = 9.8, 2.4 Hz, 1H), 4.24 (m, 1H), 3.86 (dd, J =10.3, 1.8 Hz, 1H), 3.61 (dd, J = 12.8, 6.6 Hz, 1H), 3.36 (m, 2H), 2.96 (qd, J = 10.0, 7.1 Hz, 1H), 2.18 (s, 6H), 2.09 (m, 1H), 2.01-1.77 (m, 6H), 1.46 (s, 3H), 1.31 (d, J = 7.1 Hz, 3H), 1.04(d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.9 Hz, 3H), 0.73 (d, J = 6.9 Hz, 3H)3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.9, 148.0, 130.2, 128.5, 125.7, 105.0, 80.0, 77.7, 77.2, 74.8, 72.3, 43.9, 35.5, 35.0, 34.4, 33.7, 23.9, 16.4, 14.1, 12.6, 11.1, 10.4; HRMS calcd for $C_{25}H_{38}O_6 [M + 1]^+ 435.2741$, found 435.2740.

(R)-2,6-Dimethyl-2-((4R,5S,6S)-6-((R)-1-((1S,3R,4R,5S)-1,4dimethyl-2,8-dioxabicyclo[3.2.1]octan-3-yl)ethyl)-2,2,5-trimethyl-1,3-dioxan-4-yl)propanoate (24). To a stirred solution of compound 23 (150 mg, 0.35 mmol) in dry dichloromethne (4 mL) was added 2,2-dimethoxypropane (0.4 mL, 3.4 mmol) followed by a catalytic amount of p-TSA at °C. The reaction mixture was stirred for 4 h at room temperature and quenched with H₂O (2 mL). The aqueous layer was extracted with dichloromethane (2 \times 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, concentrated to dryness under reduced pressure, and purified by silica gel chromatography to afford compound 24 (157 mg, 96%) as a crystalline solid. Mp 145 °C; $[\alpha]^{27}_{D}$ = 1.5 (*c* 1.2, CHCl₃); IR (neat) ν 2927, 2855, 1757, 1656 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.04 (s, 3H), 4.21 (m, 1H), 4.07 (dd, J = 10.9, 3.7 Hz, 1H), 3.75 (dd, J = 10.5, 1.8 Hz 1H), 3.34 (dd, J = 9.1, 6.4 Hz, 1H),2.90 (qd, J = 10.9, 6.9 Hz, 1H), 2.17 (s, 6H), 2.03 - 1.66 (m, 7H),1.44 (s, 3H), 1.28 (d, J = 3.7 Hz, 6H), 1.25 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.92 (d, J = 7.1 Hz, 3H), 0.69 (d, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 173.7, 148.1, 130.2, 128.4, 125.6, 104.8, 100.6, 80.2, 74.4, 72.7, 70.9, 40.6, 38.8, 35.2, 34.1, 33.7, 25.5, 24.1, 23.9, 23.4, 16.3, 13.7, 12.7, 12.4, 7.9; HRMS calcd for $C_{28}H_{42}O_6 [M + Na]^+$ 497.2874, found 497.2872.

(S)-2-((4S,5R,6R)-6-((R)-1-((1S,3R,4R,5S)-1,4-dimethyl-2,8dioxabicyclo[3.2.1]octan-3-yl)ethyl)-2,2,5-trimethyl-1,3-dioxan-4-yl)propan-1-ol (3). To an ice-cooled suspension of LAH (16 mg, 0.42 mmol) in dry THF (4 mL) was added a solution of compound 24 (100 mg, 0.21 mmol) in dry THF (3 mL) under N₂ atmosphere with stirring for 4 h at room temperature. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with aqueous ammonium chloride solution and the formed precipitate was filtered on a small pad of Celite and washed with ethyl acetate $(2 \times 10 \text{ mL})$. The combined organic layers were dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by silica gel chromatography, using ethyl acetate and hexane (1:5) as the mobile phase, to obtain alcohol **3** (70 mg, 94%) as a colorless liquid. $[\alpha]^{27}_{D}$ +6.1 (c 1.24, CHCl₃); IR (neat) v 3457, 2922, 1640, 1462, 1380 cm⁻ ¹H NMR (400 MHz, CDCl₃) δ 4.21 (dd, J = 6.1, 3.9 Hz, 1H), 3.72 (dd, J = 10.3, 3.9 Hz, 1H), 3.67 (dd, J = 10.3, 3.9 Hz, 1H),3.63-3.49 (m, 2H), 3.34 (m, 2H), 2.03-1.60 (m, 8H), 1.43 (s, 3H), 1.38 (s, 3H), 1.31 (s, 3H), 0.93 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 7.1 Hz, 3H), 0.76 (d, J = 7.1 Hz, 3H), 0.68 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 104.8, 100.5, 80.2, 76.3, 74.5, 72.7, 69.4, 38.8, 36.4, 34.7, 34.2, 33.7, 25.9, 24.2, 23.9, 23.4, 12.9, 12.6, 12.5, 7.8; HRMS calc for $C_{20}H_{36}O_5$ [M+1]⁺ 357.2636, found 357.2635.

Acknowledgment. S.H. and M.M. thank Council of Scientific & Industrial Research (CSIR), New Delhi, India for the financial assistance in the form of research fellowships. D.K.M. thanks Council of Scientific & Industrial Research (CSIR), New Delhi, India for a research grant (INSA Young Scientist Award). We are thankful to Dr. B. Sridhar for his help with X-ray crystallographic analysis.

Supporting Information Available: Experimental procedures and spectroscopic data, copies of ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR spectra for new compounds, NOE spectrum of 18, 24, and a CIF file of 24. This material is available free of charge via the Internet at http://pubs.acs.org.